Model Selection in Linear Mixed Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Selection in Linear Mixed Models

Linear mixed effects models are highly flexible in handling a broad range of data types and are therefore widely used in applications. A key part in the analysis of data is model selection, which often aims to choose a parsimonious model with other desirable properties from a possibly very large set of candidate statistical models. Over the last 5–10 years the literature on model selection in l...

متن کامل

Random effects selection in linear mixed models.

We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard nor...

متن کامل

Variable Selection in Linear Mixed Effects Models.

This paper is concerned with the selection and estimation of fixed and random effects in linear mixed effects models. We propose a class of nonconcave penalized profile likelihood methods for selecting and estimating important fixed effects. To overcome the difficulty of unknown covariance matrix of random effects, we propose to use a proxy matrix in the penalized profile likelihood. We establi...

متن کامل

Model Selection in Linear Mixed Effects Models Using SAS PROC MIXED

Although there are disadvantages associated with model building procedures such as backward, forward and stepwise procedures (e.g. multiple testing, arbitrary significance level used in dropping or acquiring variables), many analysts use these procedures and are not aware that alternative modeling selection methods exist. This paper focuses on model selection using the Akaike Information Criter...

متن کامل

Bootstrap Model Selection in Generalized Linear Models

Model selection is a central component of data analysis Though there are a variety of methods for likelihood based estimation methods there are relatively few for non likelihood based generalized linear models GLM such as in the quasi likelihood and generalized es timating equation GEE approaches In this paper we develop basic and bias corrected bootstrap approaches to estimate the predictive m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 2013

ISSN: 0883-4237

DOI: 10.1214/12-sts410